Multiple quadrature using highly oscillatory quadrature methods
نویسندگان
چکیده
منابع مشابه
Highly oscillatory quadrature
Oscillatory integrals are present in many applications, and their numerical approximation is the subject of this paper. Contrary to popular belief, their computation can be achieved efficiently, and in fact, the more oscillatory the integral, the more accurate the approximation. We review several existing methods, including the asymptotic expansion, Filon method, Levin collocation method and nu...
متن کاملQuadrature methods for highly oscillatory singular integrals
We study asymptotic expansions, Filon-type methods and complex-valued Gaussian quadrature for highly oscillatory integrals with power-law and logarithmic singularities. We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand, the stationary points and the endpoints of the integral. A truncated asymptotic expansion...
متن کاملQuadrature methods for multivariate highly oscillatory integrals using derivatives
While there exist effective methods for univariate highly oscillatory quadrature, this is not the case in a multivariate setting. In this paper we embark on a project, extending univariate theory to more variables. Inter alia, we demonstrate that, subject to a nonresonance condition, an integral over a simplex can be expanded asymptotically using only function values and derivatives at the vert...
متن کاملSuperinterpolation in Highly Oscillatory Quadrature
Asymptotic expansions for oscillatory integrals typically depend on the values and derivatives of the integrand at a small number of critical points. We show that using values of the integrand at certain complex points close to the critical points can actually yield a higher asymptotic order approximation to the integral. This superinterpolation property has interesting ramifications for numeri...
متن کاملOn Quadrature Methods for Highly Oscillatory Integrals and Their Implementation
The main theme of this paper is the construction of efficient, reliable and affordable error bounds for two families of quadrature methods for highly oscillatory integrals. We demonstrate, using asymptotic expansions, that the error can be bounded very precisely indeed at the cost of few extra derivative evaluations. Moreover, in place of derivatives it is possible to use finite difference appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2004
ISSN: 0377-0427
DOI: 10.1016/j.cam.2003.08.050